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We formulate a stochastic equation to model the erosion of a surface with fixed
inclination. Because the inclination imposes a preferred direction for material
transport, the problem is intrinsically anisotropic. At zeroth order, the anisot-
ropy manifests itself in a linear equation that predicts that the prefactor of the
surface height-height correlations depends on direction. The first higher order
nonlinear contribution from the anisotropy is studied by applying the dynamic
renormalization group. Assuming an inhomogeneous distribution of soil sub-
strate that is modeled by a source of static noise, we estimate the scaling
exponents at first order in an £-expansion. These exponents also depend on
direction. We compare these predictions with empirical measurements made
from real landscapes and find good agreement. We propose that our anisotropic
theory applies principally to small scales and that a previously proposed
isotropic theory applies principally to larger scales. Lastly, by considering
our model as a transport equation for a driven diffusive system, we construct
scaling arguments for the size distribution of erosion "events" or "avalanches."
We derive a relationship between the exponents characterizing the surface
anisotropy and the avalanche size distribution, and indicate how this result may
be used to interpret previous findings of power-law size distributions in real sub-
marine avalanches.
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I. INTRODUCTION

One of the great challenges faced by modern research in nonlinear physics
is the construction of predictive theories for systems in which the under-
lying equations of motion are not known. An example that has recently
created much interest is the flow of sand, or, more generally, granular
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fluids.(1, 2) One expects that the Navier-Stokes equations do not apply to
granular flow because of the dissipative nature of grain-grain collisions.
Although physical arguments have been used to deduce equations of
motion applicable to certain situations (e.g., see ref. 3), a comprehensive
theory of granular flow remains elusive.

Still more complicated than sand is the flow of wet sand.(4) Viewed
naively, in such a situation we retain the complexity of the Navier-Stokes
equations and add to it the complicated frictional stresses of a granular
heap. In this paper we shall concern ourselves with wet sand in the form
of a particular problem in geomorphology. Specifically, we study the ero-
sion of a landscape due, usually but not exclusively, to the flow of water
over it. Despite the obvious difficulties of this problem, our aim is to obtain
some simple results that offer fundamental insight into erosion. Why we
expect to do so deserves some further comment.

There is now a wealth of empirical evidence that shows that real
landscapes exhibit some form of scale invariance.(5) These scaling laws
come in many forms. Perhaps best known are those that describe the
branching of river networks.(5) These are not the scaling laws that interest
us here, however. Instead, we wish to view the problem of topography
more generally, by examining statistical properties of surfaces h(x), where
x denotes the horizontal position and h is the topographic height or
elevation.

The statistics that primarily interest here are the height-height correla-
tion functions
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Scale invariance comes in the form of self-affinity.(6) In other words,
C(r)~r a , where a is known as the roughness exponent. Various empirical
measurements in different sorts of terrain show that this power-law form
may hold over an order of magnitude or more, with some measurements
indicating that a is small (0.30<<x<0.55)(7–13) while others show it to be
large (0.70<a<0.85). (9–16)

Although there is not much agreement on the value of the scaling
exponent a, the occurrence of scaling itself is fairly common. We are there-
fore led to consider theoretical models whose solutions also exhibit scaling.
These models are stochastic partial differential equations that are Langevin
equations for the evolution of a surface.(17) One of our goals here is to
derive such an equation that predicts some aspects of the observed scaling.
Our hope is that our predictions are general and independent of details
such as material properties, climate, etc. Thus we hope that our model
exhibits some degree of universality.(18)



For our model to exhibit universality, we must identify a class of
topographic evolution problems for which we may make quantitative
predictions. The class of problems we discuss here are problems in which
symmetry is broken by the existence of a preferred direction—downhill—
for the flux of eroded material. Following work we have already reported
in a brief Letter,(19) we derive an anisotropic noisy diffusion equation to
describe erosion at the small length scales where the preferred direction is
fixed throughout space. The linear regime of this equation predicts that
C(r) is anisotropic at the level of its prefactors. The predicted anisotropy
is testable, and empirical studies in progress show that it works with
unusual generality.(20) Under the additional assumptions that the flux of
eroded material increases with increasing distance downslope and that the
dominant effects of noise are fixed in space, we find, using the dynamic
renormalization group, that not only is C(r) anisotropic, but that it scales
with different exponents that correspond to the downhill direction and the
direction perpendicular to the downhill direction. This result is also
testable, and we present one example, made from the topography of the
continental slope off the coast of Oregon, in good agreement with our
predictions.

An additional conclusion of our study concerns the wide range of
values of a that have been reported in the literature. It has been proposed
previously(11) that observations of <x~0.4 could be explained by the
Kardar-Parisi-Zhang (KPZ) equation(22)
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In its application to geomorphology, v is a topographic diffusivity coef-
ficient, X is related to the velocity of erosion in the direction normal to the
surface, and rj is a source of random noise that is uncorrelated in space and
time. We observe here that if Eq. (2) really does capture some aspects of
topographic evolution, then it applies only to those cases in which a is
found to be small. It turns out that most observations of small a are made
at large length scales where no preferred direction is easily identified,(7–13)

whereas observations of large a are usually associated with small length
scales.(9–16) Because the average results predicted by our anisotropic theory
are consistent with these large-a observations, we can tentatively identify
two "universality classes" of topographic evolution. In the KPZ class,
topography evolves isotropically (perhaps due to internal tectonic stresses)
at large length scales and yields small roughness exponents, while in our
anisotropic class, topography evolves erosively, "one slope at a time," at
small length scales and yields large roughness exponents. We lend some



support to this conclusion by showing evidence of such a crossover in a
single topographic dataset.

The general framework of our theory also allows us to make some
contact with the larger field of "self-organized criticality" (SOC).(23) Specifi-
cally, sloping submarine topography gives rise to underwater avalanches.
These avalanches create flows, known as turbidity currents,(24) that even-
tually come to rest as sedimentary deposits called turbidites.(25) A number
of recent studies have indicated that the size distribution of these natural
avalanches may follow the power-law scaling predicted by SOC sandpile
models.(26–28) Here we show how our theory for topographic evolution may
be linked to the SOC theory for avalanche sizes. Specifically, we derive a
relation between the anisotropic correlations of the slope and the size dis-
tribution of the avalanches.

This long introduction will have succeeded if the reader is convinced
that the concepts of scaling and universality may have some applicability
to understanding some generic features of our natural environment. In this
spirit, it is our pleasure to dedicate this paper to Leo Kadanoff.
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II. MATHEMATICAL FORMULATION

We begin our discussion with a brief introduction to stochastic equa-
tions for surface growth.(29, 30) We first review some standard isotropic
models, and briefly remark on their applicability to geomorphology. We
then introduce our anisotropic model. Analysis of the model is deferred to
the following section.

A. Isotropic Surface Growth

Our objective is to determine the evolution of the surface h(x, t),
where, as we have already stated, h is the height of the surface at position
x and time t. We assume that h is single valued—that is, overhangs are not
allowed. The general form of an equation for h that we consider here is

f represents the flux of eroded material, and rj is a source of random noise
that allows us to include random fluctuations in the growth process. In the
absence of specific information on F, one generally seeks to first identify
all applicable physical symmetries and conservation laws. This then allows
the construction of the simplest possible form of ,¥ compatible with these
constraints.(30)



Of the vast number of equations such as (3) that have been proposed
in recent years,(29, 30) here we restrict the discussion to models that have
been proposed for the study of erosion at large length and long time scales.
These may be divided roughly into two categories: those which conserve a
material flux J and those which do not. In the conservative models,
J^ = — V • J, where J is the current of material. The simplest of these has
J = — V/j and no noise, leading to the classical diffusion equation, which,
in geomorphology, was first popularized by Culling:(31)

As discussed in the introduction, the predictions of the KPZ equation
do not agree with many measurements made on landscapes at small length
scales.(9–16) Thus some other physical mechanisms must be dominant in this
range. Here we propose that evolution at small length scales is strongly
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The diffusion equation alone, however, cannot explain the formation of
stable self-affine landscapes. If we add uncorrelated noise, we obtain the
so-called Edwards-Wilkinson equation.(32, 33) With this equation we can
obtain true self-affine surfaces, but in the relevant number of dimensions
(i.e., when the dimensionality of the position vector x is d = 2), the noisy
version of Eq. (4) predicts that correlations decay logarithmically (i.e.,
a = 0).(32, 33) Thus neither the deterministic nor stochastic form of Eq. (4) is
compatible with the aforementioned observational evidence.

Partly as a remedy for this problem, non-conservative equations have
been proposed. The most popular of these is the KPZ equation, Eq. (2). As
Sornette and Zhang(21) have remarked, the KPZ equation is attractive as
a model of erosion because it is the simplest surface growth equation that
can generate a nontrivial (a = 0) self-affine landscape. Specifically, the KPZ
equation contains the necessary ingredients of nonlinearity and noise.
Roughly speaking, the nonlinearity results from a uniform rate of erosion,
at all locations x, in the direction normal to the surface, and the noise
accounts for the irregularities of the process in time and space. The rough-
ness exponent reported for KPZ in d=2 by numerical integration varies
between 0.2 and O.4.(34–36) As discussed above, these values are in
reasonable agreement with observations at large length scales, where one
finds that 0.30 < a < 0.55.(7–13) Thus the KPZ scenario of non-conservative
isotropic growth normal to the surface may indeed apply to some aspects
of large-scale landscape evolution.

B. An Anisotropic Model



482

influenced by the breaking of symmetry induced by the presence of a slope
of fixed inclination.

Figure 1 depicts the framework for our theory. The vector eA is the
growth direction in our parametrization. Note that eh is measured from the
top of the slope downwards. The action of gravity selects a preferred direc-
tion given by the vector eN, which is essentially defined by the direction
"downhill," and which coincides with the average direction of the flow of
material. The symbol e± stands in general for the subspace of directions
perpendicular to eM. For a real landscape, this subspace is spanned by a
single vector. Later we generalize to landscapes on Ud, in which case the
perpendicular subspace has dimension d—\. The framework of Fig. 1 is
completed by imposing fixed boundary conditions at the top of the slope
(i.e., at X|| = 0), or by imposing the symmetry xM -> — xn.

Because Fig. 1 explicitly distinguishes between the two directions e±

and eM, we expect this same anisotropy to be reflected in the correlation
function C(r). Thus, if h is self-afline, we expect different roughness
exponents for correlations measured in each of the directions en and e ± .
Specifically, we define a,, and OL± such that C||(*||) ~ \x^ I*" for correlations
along fixed transects \°±= const., and C ± ( x ± ) ~ |x± j 0 " 1 for correlations
along fixed transects x°| = const., where in general aN ¥=<x±. These relation
are summarized by the single scaling form
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Fig. 1. Schematic configuration of an anisotropic landscape in d = 2.

where C\\ is the anisotropy exponent. The roughness exponents ay and <x±

are related to £M by
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The anisotropy exponent C\\ accounts for the different rescaling factors
along the two main directions. Since the space is anisotropic, when per-
forming a scale change, we must rescale xM and x x by different factors bti

and b±, respectively, if we are to recover a surface with the same statistical
properties. We assume that this scaling is self-affine, such that

Note that C\\ defines only the ratio of the roughness exponents, but not
their precise magnitudes; moreover, the scaling form (5) is not unique. We
can also express the rescaling along the direction e± by writing

where we have used the anisotropy exponent C± = l/(\\. Both scaling forms
(5) and (8) are completely equivalent.

We seek a single stochastic equation for the landscape height h. We
assume that the deterministic motion of the underlying soil is locally con-
served such that

where J is the current of soil per unit length. The soil however is not
globally conserved, since it is lost at the bottom boundary. Conservation is
also broken by the addition of a stochastic noise term n, discussed below.

Physically, the current J is expected to reflect two effects. First, we
expect a local isotropic diffusing component, tending to smooth out the
surface. Second, we expect an average global flow of dragged soil, directed
mainly downhill. Thus we postulate the following form for the current:

The first term corresponds to Fick's law for diffusion, and represents the
isotropic relaxational dynamics of the soil. The second term represents the
average flow of soil that is dragged downhill, either due to the flow of
water or the scouring of the surface by the flow of the soil itself. The direc-
tion of this term is given by the vector Vnh = d\\h eM. The term L plays the
role of an anomalous anisotropic diffusivity. In order to gain insight into t
role of F, consider the case in which erosion results from the stress exerted



on the soil bed by an overland flow Q of water, where Q is the volumetric
flow rate through unit area perpendicular to the direction of steepest
descent. The greater Q is, the stronger is the stress.(15, 37) Moreover, since
Q flows downhill, it increases with distance downslope. Thus F must be
an increasing function of x^. Since the fixed inclination implies that h
increases with jcn, we choose to parameterize the anomalous diffusion as a
function of the height such that r=T(h). Defining F{h) = X0 + g(h), with
g(0)=0 and G{h) = \ g{h) dh, we substitute Eq. (10) into (9). Then, since
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where we have used the chain rule for the second equality, we obtain

where vx = v and vM = v + Xo.
We may advance still further by making some additional assumptions.

Assuming that F(h) is an analytical function, we can perform a Taylor
expansion in powers of h. Since all odd powers of h must vanish in order
to preserve the joint symmetry h-> — h, J-> — J in Eq. (9), we are left a
lowest order with g(h)^X2h

2. By dimensional analysis (see next section
and the Appendix) one can check that all the terms h2k in this expansion
are relevant under rescaling. However, the flux Q(x^) of the erosive agent
(water or soil) flowing on the surface should grow no faster than Q(x^)~x^.
Then, taking h~x^, we find that the terms in g{h) should be of order hd

or less. Specializing to the case of d = 2 (i.e., real surfaces), we then find
it reasonable to truncate g at second order. Equation (12) then takes the
form

where X = X2.
Equation (13) constitutes our full nonlinear theory. Note that it differs

significantly from the anisotropic driven diffusion equation of Hwa and
Kardar.(38, 39) The differences are essentially due to the form of our current J,
which in our case is suggested not only from symmetry principles, but also
from the physics of erosion. We note additionally that, unlike some pre-
vious models of landscape erosion that couple two equations—one for the



landscape h, and one for the overland flow Q(40–44)—here we have
implicitly assumed that the effects of Q may be subsumed into the func-
tional dependence of J on h. Specifically, our fundamental assumption of a
preferred direction for the current J can be traced to global constraints
imposed by the fixed inclination. Thus average effects of Q—for example
the fact that the erosion rate increases with xn for X2 > 0—survive our local
formulation.

It remains to discuss the issue of noise. We distinguish two possible
different sources. First, we may allow a term of annealed (time dependent)
noise, e(x, t), depending on time and position, and describing a random
external forcing due, for example, to inhomogeneous rainfall. We assume
that this noise is isotropic, Gaussian distributed, with zero mean, and
correlations
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Second, we may have a term of quenched (time-independent) noise to
account for the heterogeneity of the soil, mimicking the variations in the
erodibility of the landscape.(45) The notion of quenched noise is common in
the study of interface growth in a disordered medium, close to the depinning
transition.(46) In this case, the noise is a function of position and height,
e(h, x), with correlations given in general by

where the correlator A can be taken to be the usual Dirac delta function.
For this prescription of quenched noise, however, an analytical approach
appears hopeless.(47, 48) We therefore propose to relax this definition and
represent the quenched randomness of the soil by a static noise e(x), with
correlations

This form of "columnar" noise, despite being a rather crude approximation,
has been previously proposed to model soil heterogeneity in cellular
automata models of fluvial networks.(49) Moreover, we have found it to be
useful for obtaining realistic river networks in numerical simulations.(50) In
this paper we primarily consider the case of static noise (16), corresponding
to the limit in which the external forcing is constant and the dominant
source of noise is the inhomogeneous composition of the soil. Results for
the case of thermal noise are described in ref. 19.



Even in the absence on any nonlinearity, fundamental conclusions
may be drawn from (12). By setting g = 0 (i.e., by considering F(h) =
Xo = const), we obtain the linear equation

which is an anisotropic counterpart of the Edwards-Wilkinson equa-
tion (32 , 33) Let us consider for the moment the case of a thermal source of
noise e with correlations (14). In this case, it can be easily shown that the
amplitude of the correlation functions along the main directions en and e ±

are inversely proportional to the square root of the diffusivities vM and v± ,
respectively. This inverse proportionality is well known in the isotropic
case (see ref. 51, Eqs. (2.19), (2.23), and (2.26)). In the anisotropic case, we
need only realize that the computation of, say, CM follows from the correla-
tions of h computed at fixed values of x ± . We then obtain C^~v^i/2 and
an analogous result for C±. Thus, in the linear regime (17), the ratio of the
correlations in the two principal directions scales like

B. Nonlinear regime
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III. STATISTICAL SOLUTIONS

A. Linear Regime

In other words, since the preferred direction gives Vj( > v± (since the relaxa-
tion of material is expected to be faster in the direction x^), the topography
is quantitatively rougher, at all scales and by the same factor, in the per-
pendicular direction than in the parallel direction.

In the case of static noise with correlations (16), it can be shown by
dimensional analysis that the correlation functions are inversely propor-
tional to the diffusivities. In other words, C ~ v ~' and Eq. (18) is corre-
spondingly changed. The qualitative prediction C±>CH, however, still
holds.

In this section we summarize the application of the dynamic renor-
malization group (DRG)(39, 52–54) to our nonlinear model, Eq. (13). Further
details may be found in the Appendix.

The DRG proceeds in Fourier space by integrating out the fast modes,
corresponding to large momentum k, over an outer shell Ab~l<k<A,



where A is the upper cutoff in wave vector space, and b is a rescaling factor.
In order to bring the system back to its original size, a rescaling is
afterwards performed, through the homogeneous transformation
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The anisotropy is given by the exponent C± = C\\l [compare with Eqs. (5)
and (8)], and the scaling with respect to time, discussed below, is given by
the dynamic critical exponent z±.

After performing this transformation, we are left with an equation with
the same form as the original one, but with different—renormalized—
parameters. The transformation law of these parameters under an infinitesimal
rescaling b = ede, d<f -> 0 constitutes the flow equations of the RG. We are
interested in the stable fixed points of these equations, corresponding to
scale invariant phases in the hydrodynamical limit.

To first order in the coupling constant A, the flow equations read

Here we have defined the effective coupling constant

with Kd = Sd/(2n)d and Sd the surface area of a d-dimensional unit hyper-
sphere. The flow equations for vx and D are exact to all orders in the
perturbation expansion. In the case of D, this can be proven to be true for
any stochastic equation with a conserved current and a non-conserved
noise, independently of the details of the current.(55) For v± , this results
from the fact that the nonlinearity is proportional to the external momen-
tum k\\, and cannot therefore renormalize a parameter proportional to k±

(see Eq. (13)).(39) Thus Eqs. (21) and (23) provide us with the exact result



z± = 2, and with the exact scaling relation 2rx — 2ax — £x = rf—1. Th
dynamic critical exponent z x measures the saturation length of correlations
as a function of time.(21, 30) However, since the time scales for geomorphol-
ogic evolution are many orders of magnitude larger than those available
for observation, the actual value of z x , appears, at least at this point, to
be purely a matter of speculation.

Given (20)-(24), the effective coupling I flows under rescaling as

The values (27) predicted for a x and aN are in reasonable agreement
with previous measures made at small length scales,(9–16) where the
roughness exponent was reported to be between 0.70 and 0.85. This obser-
vation lends support to the hypothesis of two "universality classes" for
geomorphological evolution. The first of these classes encompasses
topographies evolving isotropically at large length scales, and possibly
dominated by non-erosive mechanisms such as internal tectonic stresses.
A characteristic of this class is a small roughness exponent which is com-
patible with estimates made from the KPZ Eq. (2). Thus, following the
proposal of Sornette and Zhang, we can identify the KPZ equation as a
description of some universal features of the large scale dynamics. On the
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where e = 4 — d. The stable fixed points of (25) are l f = 0 for d>4 an
I* = e/3 for d<4. For d> 4 the critical exponents attain their mean-field
values <xx = 0, £x = 1, and z x = 2. On the other hand, for d< 4, the critical
exponents computed at first order in e are

The physically relevant dimension for erosion in the real world is
d—2. Even though the result (26) represents only the first terms in a
expansion in powers of e, and is therefore valid only approximately for
small values of that variable, we can still gain some information by setting
s = 2. In this case, we obtain the scaling exponents

IV. COMPARISON WITH FIELD DATA



other hand, for small length scales we expect anisotropic effects to be domi-
nant. The anisotropy, which is induced by small-scale inclinations of the
landscape, would lead to a purely erosive dynamics, which in turn should
yield the large roughness exponents predicted by our theory.

If these two universality classes do indeed exist at different length
scales, then one should be able to find evidence of a crossover from one
regime to another in the same piece of topography. Specifically, one expects
that the correlation function should change from a high a regime at short
length scales to a low a regime at large length scales. This sort of crossover
has indeed been reported several times in the literature.(9, 10, 12, 13, 56) Indeed,
ref. 10 has already suggested that the crossover length separates a small-
scale erosive regime from large-scale tectonic deformation. Reference 56, on
the other hand, suggests that the crossover separates length scales which
have had sufficient time to fully develop in a KPZ-like way and those
which have not. Although it is beyond the scope of this paper to make a
definitive argument in favor of either of these interpretations, in Fig. 2 we
present measurements of our own, from the Appalachian Plateau in NW
Pennsylvania. Figure 2 also suggests the presence of a crossover, here
located at a characteristic scale of about 1 km. We note that in topography
depicted in Fig. 2a, the principal features are deeply eroded channels with
a characteristic width of order 1 km. The long wavelength features, on the
other hand, have resulted from tectonic stresses associated with the forma-
tion of the Appalachian Mountains. Thus, based on the evidence of this
example, we prefer the interpretation of ref. 10.

Fig. 2. (a) Digital elevation map of an area of the Appalachian Plateau, in Northwest
Pennsylvania. Elevations are given in meters. The spatial resolution is 90 m. (b) Averaged
height-height correlation function C(r) for the landscape in Fig. 2a, where r is oriented in the
vertical direction of (a). A plot of similar shape, but with smaller values of C(r), is obtained
in the horizontal case. Logarithms are computed from quantities measured in units of meters.
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In Fig. 2 there is no obvious preferred direction, and all of the
measurements reported in the literature were either averaged over all direc-
tions or the direction of the measurements was not reported. Thus, to
check the full validity of our results with natural topography that has an
unambiguous preferred direction, we have analyzed digital bathymetric
maps of the continental slope off the coast of Oregon. In this case the slope
results from the relatively abrupt increase in the depth of the seafloor as the
continental shelf gives way to the deeper continental rise. Figure 3a shows
one portion of this region. Here the main feature of the topography is a
deep incision called a submarine canyon. In this region, submarine canyon
are thought to have resulted from seepage-induced slope failure,(57) which
occurs when excess pore pressure within the material overcomes the
gravitational and friction forces on the surface of the material, causing the
slope to become unstable. Slope instabilities then create submarine
avalanches, which themselves can erode the slope as they slide downwards.

In order to make comparisons with our predictions (27), we have
computed the correlation functions CM and C±, corresponding, respec-
tively, to the parallel and perpendicular directions of the seafloor
topography in Fig. 3a. The computation of Cx follows naturally from its
definition but the computation of C^ deserves some comment. The fluctua-
tions measured by Cu must be defined with respect to an appropriate
average profile. One expects that geologic processes other than erosion
(e.g., tectonic stresses) are responsible for long-wavelength deformations in
the parallel direction. Assuming that these deformations are on average

Fig. 3. (a) Digital map of a submarine canyon off the coast of Oregon, located at coor-
dinates 44°40' N, 125°45'W. The vertical axis represents the depth z below sea level. The spa-
tial resolution is 50m. (b) Mean average profile of the canyon, along the direction xu. All
units are given in meters.
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constant in the perpendicular direction, we may estimate such systematic
corrections by computing the mean profile along the parallel direction,

where L± is the length of the system in the perpendicular direction. We
have plotted /iav in Fig. 3b. We use it to detrend h by computing the
correlation function C^ from the fluctuations of the detrended surface
h = h-hav(xn).

Figure 4 shows the plots of CM and Cx , corresponding to the
topography in Fig. 3a. One sees that the least-squares estimates of the
roughness exponents, a,, ~0.67 and a± ~0.78, exhibit a surprisingly good
fit to our theoretical predictions (27).

We have also measured CM and Cx in some desert environments. One
such example is shown in Fig. 5, corresponding to an area near Marble
Canyon, in Northeast Arizona. In these cases we do not obtain conclusive
power law scaling, but we almost always find C±/Clt > 1, as predicted by
the linear theory. (Indeed, at small scales in this case, we find C± ^ 1.8C7M).
Thus, while the example of Fig. 3 may be in some sense specialized, one of
our main predictions—that the topography in the perpendicular direction
is rougher than the topography in the parallel direction—seems to be of
fairly general validity.

Fig. 4. Height-height correlation functions computed along the parallel (CM) and per-
pendicular (C±) directions for the landscape shown in Fig. 3a. Solid lines are least-squares fits
to the scaling region. The logarithms are computed from quantities measured in meters.
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Fig. 5. Digital elevation map of an area near Marble Canyon, in Northeast Arizona. Eleva-
tions are given in meters, and the spatial resolution is 90 m. (b) Height-height correlation
functions computed along the parallel (C^) and perpendicular (C±) directions for the
landscape shown in Fig. 5a. Logarithms are computed from quantities measured in meters.

Real sloping topography can erode episodically in a series of infre-
quent events. This episodic erosion amounts to a series of avalanches.

For the case of sloping submarine topography such as that shown in
Fig. 3a, such avalanches can create gravity-driven flows'241 of suspended
sediment. When these flows finally come to rest, the sediment settles out.
Then, over geologic time, the sediment solidifies to form sedimentary rocks
known as turbidites.(25) Partly because these sedimentation events are
widely spaced in time, individual layers of rock may be associated with
each avalanche-like sedimentation event. The thickness of these layers may
be assumed to be related to the size, or volume of sediment, associated with
the avalanche that created them.

Recent empirical studies of turbidite deposits show that in some
instances a power-law distribution of thicknesses may be observed that
extends over nearly two orders of magnitude in thickness.(26–28) In other
words, the measurements indicate that the probability Pa(A) of an
avalanche resulting in a deposit of thickness A scales like
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V. SIZE DISTRIBUTION OF AVALANCHES



with a characteristic exponent x. Assuming that turbidites result from a
series of slumps that may be in some way related to the SOC sandpile
models, then, as indicated in refs. 26-28, their size distribution may also be
given according to a expression similar to (30). One might further expect
that this distribution could be related to geometric aspects of the surface
from which the avalanches fall. Our objective in this section, then, is to
relate the scaling properties of the topography of a sloping surface to the
scaling properties of the avalanche size distribution.

To do so, we follow refs. 38 and 39 and view our model (13) as a
transport equation that describes a driven diffusive system, i.e., a sandpile.
Under this assumption, we may compute the probability distribution of the
size of the surface area that relaxes as a result of the interplay between the
driving force—noise—and the diffusive damping. We assume that this dis-
tribution is a power law, with a cutoff due to finite-size effects. Moreover,
we expect these relaxing surface patches to exhibit the same anisotropy as
the underlying topography. In other words, as shown in Fig. 6, we assume
that the avalanches result from unstable patches of unit thickness with
extension proportional to f^ and tf± in the parallel and perpendicular direc-
tions, respectively. From Eqs. (5), (6), and (7), the self-affine nature of the
topography gives rf± ~ tff. Thus the size s of an unstable patch of extent /M
in the parallel direction scales like ^f|+f|1, and the maximum size of an
avalanche in a system of parallel extent L scales like L1+fn. The probability
distribution of avalanche sizes s in a system of finite size L may then be
expressed as(58)

Here f{x) is a scaling function such that f is constant for small x < 1 and
zero for large x> 1. Using Eq. (31), we can relate r to C\\ by means of a

2 Note that our notation differs from refs. 27 and 28, where the cumulative distribution of
layers was studied. Specifically, their exponent B is equal to, in our notation, y— 1.
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where y is a characteristic exponent.2 In the best documented cases, y is
between about 2 and 2.4.(26–28)

References 27 and 28 suggested that the power-law distribution (29)
could be the result of a natural manifestation of self-organized criticality
(SOC).(23, 58) Systems exhibiting SOC, and in particular, certain models of
sandpiles; exhibit a dynamics dominated by avalanche events, in which the
number of avalanches of size s scales like the power law



For perfect spreading (i.e., all layers have the same thickness), # = 0,
whereas for no spreading at all (i.e., all sedimentation events cover the
same area A =s/A = const.), / = 1 . Empirical studies of rock slides, for

Fig. 6. Scaling of an "avalanche patch" over an anisotropic landscape.
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scaling argument.(49, 59, 60) The average size (s) of an avalanche is defined
by

Performing the change of variables 5 = ^L1+C« then yields

On the other hand, since each avalanche is a self-affine patch, as L -> oo
the average patch should become increasingly elongated in the parallel
direction (since £M < 1). Thus one expects <s> ~ L for large L. This rela-
tion, together with (34), provides us with the result

which relates the avalanche-size exponent T to the anisotropy exponent £n-
As noted in refs. 28 and 61, we must also address the relationship

between the avalanche size (or mass) s and the thickness A of the deposited
layer. One way to do this is by introducing the spreading exponent x such
that



Equation (38) relates the exponents describing surface anisotropy,
avalanche size, and spreading. Using our DRG estimate for the anisotropy
exponent, £n = 3/4, and assuming a spreading exponent / = l / 3 , we find
that

In concluding, it is worthwhile to reflect on the main elements of our
theory. Lacking any fundamental "equations of motion" for erosion, we
have elected to proceed from conservation laws and symmetry principles.
Thus the principal ingredients of our model are the conservation of the
eroding material, the presence of a preferred direction for the transport of
it, and randomness in either the landscape or the forcing. Making just these
assumptions, we derived an anisotropic stochastic equation from which we
have extracted both qualitative and quantitative predictions. The main
qualitative prediction is that eroded topography is rougher in the direction
across slopes than it is in the direction down slopes. The main quantitative
predictions are scaling laws for height-height correlation functions. These
require additional assumptions or restrictions concerning the noise and
the relevant degree of nonlinearity. Both the qualitative and quantitative
predictions appear to be in good agreement with measurements made from
real landscapes.
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example, indicate that / ~ l / 3 , ( 6 2 ) corresponding to self-similar areal
spreading. From the relation Ps(s) = P/l([A(s)~\)(d/i/ds), we find, using
Eqs. (31) and (36), that

Then from Eq. (35) we obtain

which is in reasonable agreement with the best documented results of
refs. 26-28. On the other hand, we may consider Eq. (38) to be a prediction
of the spreading exponent x when y is measured in a single location but %
is unavailable. This could be useful in geological applications where one
wishes to know the spatial extent of a sequence of turbidite deposits.

VI. CONCLUSIONS



We have also included an interpretation of our theoretical model as a
driven diffusion equation. In this case we have been able to relate the dis-
tribution of the sizes of erosion events, or "avalanches," to the self-affine
scaling that we have predicted for the nonlinear regime of our model. The
testing of this prediction is beyond the scope of this paper, however, as it
would require either unusually extensive geological data or an innovative
laboratory experiment.

Our results apply, in principle, to any erosive process with the
appropriate lack of symmetry. In the usual geological setting, however, the
anisotropy applies specifically to a surface of fixed inclination which, in
turn, implies that our theory should only apply locally, to the relatively
small scales where the preferred direction of transport is approximately
constant. Because the anisotropy should vanish at large length scales, we
argue that large-scale features of topography should be presumably
described by a different, isotropic theory, such as the KPZ Eq. (2).(21, 22)

We provide evidence, and cite additional results from the literature, that
such a crossover indeed exists. We suggest, in line with others,(10) that the
crossover length separates small-scale, externally induced, erosive features
of landscapes from large-scale deformations (such as those induced by tec-
tonic stresses) of internal origin.

Finally, we wish to note that, while there is much evidence that
landscapes can be self-affine, this evidence is rarely unambiguous and cer-
tainly not ubiquitous. Our qualitative prediction that C±>CU, on the
other hand, appears more robust than any predictions of scaling exponents,
or even scaling itself. Our results suggest that the coupling of anisotropy to
topographic orientation may be a fundamental physical property of
eroding landscapes. Precisely which length scales are relevant to this
coupling, however, remains an open question.
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APPENDIX

In this Appendix we develop further details of the renormalization
group analysis of Eq. (13), where r is a static noise term, Gaussian dis-
tributed, with zero average and correlations

Here D is a parameter gauging the strength of the noise.
In order to proceed, we first Fourier transform the function h, defining
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where we have defined

The integrals over k are restricted to the upper cutoff A, which plays the
role of a lattice spacing, or minimum distance in real space. In momentum
space, and after performing a few algebraic manipulations, Eq. (13) reads

where rj(k,co) is the Fourier transform of the static noise tj{x), with correla-
tions

and the free propagator G0(k, co) has the form

In Fig. 7 we have represented Eq. (A3) in terms of Feynman diagrams.(54)

Fig. 7. (a) Diagrammatic expansion of Eq. (A3) of Feynman diagrams, (b) Definition of the
various terms.



and from them, yx = 4 — d. The nonlinearity is irrelevant (that is, yx<^)
when d>dc = 4. This defines the critical dimension dc of our system. Above
the critical dimension, the nonlinearity is negligible, and we recover the
scaling exponents (A6), which are simply given by dimensional analysis.
On the other hand, below dc the nonlinearity prevails, and we expect fluc-
tuations to be dominant and produce nontrivial scaling exponents.

The RG program is carried out with the help of diagrammatic techni-
ques.(30>52>54) The idea is to graphically iterate (A3) to the desired order in
X and express the equation in terms of effective parameters, which are given
as integrals of powers Go- Afterwards, integration of fast modes, by averaging
over the noise in the outer shell, and rescaling provides us with the renor-
malized parameters and the consequent flow equations, (20)-(23), in the
limit of an infinitesimal transformation.

We thank B. Tadic for fruitful discussions and suggestions. R.P.S.
acknowledges financial support from the Ministerio de Education y
Cultura (Spain). The work of D.H.R. was partially supported by NSF
Grant EAR-9706220.

3 In the renormalization group framework, a parameter is irrelevant if it flows to zero, and
can therefore be neglected in the calculations.
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As we mentioned above, the RG procedure consists of the elimination
of the fast modes (large wave vectors k), followed by a resealing of the
system back to its original size by means of the transformation

The relevance of the different parameters of the problem (v((, vx , A, and D)
can be estimated by dimensional analysis. One can check that, under the
aforementioned transformation, these parameters rescale as

The coupling constant X will be irrelevant3 when its scaling exponent,
X' = by*X, is negative, where yx = 2ax — 2(± + z±. Selecting the values of z
<xj_, and C± so that the transformations of v(|, vx , and D are invariant, we
obtain
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